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ABSTRACT

In cooperative game theory it is known that two-person bargaining problems have no relevant
ordinal solution. For three-player bargaining problems, Shapley and Shubik propose an ordinal
rule. However, this rule does not take into account the worth of proper subcoalitions of size
2. In this paper, we fill this gap by proposing a generalization of the Shapley-Shubik rule for
Non transferable utility games. The resulting solutions, when applied to transferable utility
games, always belong to the core, which makes it a relevant alternative to other core-selectors
such as the nucleolus. We also apply the new solution to a practical case related to mining

and natural resources management.
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1. INTRODUCTION

Ordinal bargaining have been a classical research topic in economics and has also recently become an
interesting issue in computer science (Aziz et al., 2016; Zhan et al., 2018; Erlich et al., 2018; Gafni et
al., 2021; Hazon et al., 2024). Assume there are gains of cooperation when various agents form coalitions
but there also conflicts on which coalition should be formed and how the gains should be shared. Hence,
the distribution of gains involves bargaining not only between individual agents but also among coalitions.
When each agent anticipates its opportunity cost when actually participating in each coalition, its foregone
reward may take into account this opportunity cost.

A key aspect is the preference of each agent, usually represented by a utility function. A utility
function assigns for each agent a numerical value to each possible outcome, so that a higher utility reflects
a preference relation for the agent. However, any given preference can be represented by many possible
utility functions.

Hence, a very desirable property for a value is ordinal invariance. In cooperative games, a value satisfies
ordinal invariance when it remains unaffected by order-preserving transformations of the agents’ utilities.
Shapley (1969) demonstrates that, among efficient values, only the dictatorial ones, i.e., those that give a
particular agent all the bargaining power, maintain ordinal invariance for two agents.

Take for example the symmetric case in which there are two players, say player 1 and player 2, who
have to agree on how to divide one unit of some desirable asset. Assuming selfishness, the utilities can
be represented by ui(z,y) = x and uz(z,y) = y, where (z,y) means that player 1 receives x and player 2
receives y. In this example, the Pareto frontier of the utility that players can achieve by themselves when
agreeing to cooperate lies on the set D = {(z,1—=x) : = € [0,1]}. Assume that an optimal solution depends
only on D (the utility space) and specifies that the share of the dollar should assign utilities (o, 1 —a) € D

for some « € [0, 1].



Assume now we represent player 1’s preferences by the (equivalent) utility function u}(z,y) = «®.

Hence, the utility space turns into D’ = {(2*,1 —x) : « € [0,1]}. The previous optimal solution, if ordinal,
should then assign utilities (o, 1 — ) € D'.

Assume we also change player 2’s utility to the (equivalent) function w4 (z,y) = 1+ (y — 1)3. Hence,
the utility space turns back into D" = {(z%,1 — %) : € [0,1]} = D. The optimal and ordinal solution
should then, on one hand, assign utilities (a®, 1 — o®) € D (because ordinality), and, on the other hand,
(@, 1—a) € D (because the only relevant information is given by D” = D). Thus, a = o® and 1—a = 1—a®,
which, together with « € [0,1], is only possible when o = 0 (giving all the bargaining power to player 2)
or a = 1 (giving all the bargaining power to player 1). Symmetry is thus incompatible with optimality
and ordinality.

However, this example does not extend to scenarios involving more than two agents. Shubik (1982)
initially presents a rule that is efficient, symmetric, and maintains ordinal invariance for three agents.
Although the origin of this rule is not explicitly mentioned in Shubik (1982), Pérez-Castrillo and Wettstein
(2006)[p. 297] attribute it toShapley (1969). Moreover, Roth (1979)[p. 72-73] discusses a three-agent
ordinal bargaining rule attributed to Shapley and Shubik in a 1974 working paper. Subsequently, in line
with the works of Kibris (2004b,a), we refer to it as the Shapley-Shubik rule.

Kibris (2004a) delineates a category of three-agent problems that encompass all bargaining problems.
Within this category, the ordinal Shapley-Shubik rule aligns with both the Egalitarian rule (Kalai, 1977)
and the Kalai-Smorodinsky rule (Kalai and Smorodin- sky, 1975). Furthermore, it stands as the sole
symmetric member among a set of ordinal monotone path rules. Kibris (2004b) further demonstrates the
deep connection between the ordinal Shapley-Shubik rule and a solution set defined by Bennett (1997) for
multilateral bargaining problems. Additionally, Kibris (2012) outlines the characterization of the ordinal
Shapley-Shubik rule utilizing a less stringent version of the Independence of Irrelevant Alternatives (Nash,
1950). From a non-cooperative point of view, Vidal-Puga (2015) presents a game that yields the ordinal
Shapley-Shubik rule in subgame perfect equilibria.

Conversely, Samet and Safra (2005) expand the ordinal Shapley-Shubik rule to accommodate scenarios
with more than three agents, employing methodologies akin to those in the work of O’Neill et al. (2004).
Additionally, Safra and Samet (2004) introduce another set of ordinal solutions.

Adopting an alternative methodology,Pérez-Castrillo and Wettstein (2006)as well as Zhang and Zhang
(2008) leverage the inherent physical framework that produces the frontier of utility possibilities. This
approach enables Pérez-Castrillo and Wettstein (2006) to establish an ordinal expansion for the Shapley
value applicable to any number of agents. Calvo and Peters (2005) present a blended method, examining
scenarios involving both ordinal and cardinal agents. Unlike the ordinal Shapley-Shubik value and the
extension by Samet and Safra (2005), Pérez-Castrillo and Wettstein (2006) and Calvo and Peters (2005)
permit partial agreements within subcoalitions, thus referring to non-transferable utility games.

In this paper, we present a generalization of the ordinal Shapley-Shubik rule to the case of non-
transferable utility games. As opposed to Pérez-Castrillo and Wettstein (2006) and Zhang and Zhang
(2008), the problem is formulated in the utility space. Hence, we keep the classical assumption that only
utilities that coalitions can achieve by themselves are relevant in the game. Moreover, as opposed to
Calvo and Peters (2005), we only consider ordinal players. We also show that our generalization satisfies
core-selection when restricted to transfer-utility games, which makes it a reasonable alternative to other
well-known values such as the nucleolus or the Shapley value.

The paper is organized as follows. In Section 2, we present the model and describe some previous
results. In Section 3, we define a generalization of the ordinal Shapley-Shubik rule and prove some of its
properties. Proofs can be required to the authors. In Section 4, we implement this theoretical framework
in a practical context by investigating its applicability within the specific setting of Winikunka Mountain,

also recognized as the Seven Color Mountain, located in Peru.



2. NOTATION AND PREVIOUS RESULTS

Let N = {1,2,3} be the fixed set of agents. For each nonempty S C N and z,y € R®, 2 < y means
z; <y; foralli € S, r <y means z; < y; for alli € S, and = < y means < y and = # y.

Given S C N and z € RY, 25 is the restriction of = in S, i.e., zs € RY is defined as (z5); = z; for all
i€ 8.

Given S C N and a surface A C RS, a point © € A is Pareto optimal in A if there is no y € A such
that x < y. Let PO (A) denote the set of Pareto optimal points in A. A point © € A is weakly Pareto
optimal in A if there is no y € A such that x < y. Let WPO (A) denote the set of weakly Pareto optimal
points in A.

Definition 1 A (three-player) Non-transferable utility (NTU) game is a characteristic function V : S €
NS v(s) e RS where V(S) is the set of feasible utility assignments for each coalition S, so that each

V(S) is non-empty, closed, comprehensive and bounded from above.

It is clear from the definition of a NTU game V that there exists some d € RY such that V({i}) =
(—o0,d;] for all ¢ € N.

An NTU game V is strongly comprehensive if, for all S C N, WPO (V(S)) = PO (V(S)) and for each
z € V(S), y < z implies y € V(S). Let SC denote the set of all strongly comprehensive NTU games.
When v € SC, we write 9V (.S) instead of P(V(S)) or WP(V(S5)).

Given a class of NTU games G, a value ¢ on G is a function that assigns to each NTU game V € G a
subset ¢(V') C RY of payoff allocations that represent the utility assigned to each agent in the game.

Three known values for NTU games are the Harsanyi value (Harsanyi, 1963; Imai, 1983; Hart, 1985;
de Clippel et al., 2002), the Shapley NTU value (Shapley, 1969; Au- mann, 1985), and the consistent value
(Maschler and Owen, 1992; de Clippel et al., 2002; Hart, 1994, 2005). All three of them coincide with the
Shapley value (Shapley, 1953) for TU games and with the Nash rule for bargaining problems:

Harsanyi value A point Ha(V) € PO(V(N)) is a Harsanyi value of V if there exists A € RY such that,
for each coalition S C N, there exist H*° € PO(V(S)) and ¢ € R such that Ha(V) = H*Y and
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for allie S C N.

Shapley NTU value A point Sh(V) € PO(V(N)) is a Shapley NTU value of V if there exists A € RY,
such that \;Sh;(V) = Sh;(v*) for all i € N, where Sh(v*) is the Shapley value of the TU game v*
defined as v*(§)) = 0 and

= NiTi
for each S C N \ {#} whenever these maxima exist.

Consistent value Let IIV denote the set of orders of the agents in N. For each i € N and 7w € II"V, let
P ={j € N:m(j) < (i)} be the set of predecessor of player ¢ in w. A point Co(V) € PO(V(N))
is a consistent value of V if there exist A € R, for each S C N such that vAS(S) is well-defined
for each S C N and

Cos(V) |HN| > Coi(
TelN
for all i € N, where Co™ (V') € RY is defined inductively as

1 /\Pi" U{i}
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forall i € N.



Desirable properties of a value are efficiency, anonymity, individual rationality, core selection, and

ordinal invariance. We describe each of these properties.
Efficiency A value ¢ is efficient when ¢(V) C PO(V(N)) for each NTU game V.

Let II be the set of all permutations of N, with generic element 7. Given 7 € IV, S C N and A C R,
we define 7w(S) = {n(i) : i € S} and 7(A) as

w(A) = {(acﬁ(i))ies eR™ .z e A} .
Moreover, 7V is the NTU game defined by 7V (7 (S)) = V(S) for all S C N.

Anonymity A value ¢ is anonymous when it is covariant with respect to any permutation of players, i.e,
given 7 € IV,
Gr(iy (V) = ¢i(V)
for all i € N.

An NTU game V is superadditive if V(S) x V(T) CV(SUT) for all S,T C N with SNT = 0.

Individual rationality A value ¢ is individually rational if d < z for all z € ¢(V) for each superadditive
NTU game V.

The core of an NTU game V is defined as the set of efficient payoff allocations that cannot be improved

by any coalition, i.e.,
Core(V) ={z € PO(V(N)):zs ¢ Int(V(S))VS C N}

where
Int(V(S)) = V(S)\ WPO((V(S))

is the interior of V(S), i.e., those points that can be improved by coalition S, in the sense that given

z € Int(V(S)), there exist payoffs allocations in V' (S) that improve z; for each i € S.
Core selection A value ¢ is a core selector if $(V) C Core(V) whenever Core(V) # 0.

Given z € RN and (fi)ien a vector of strictly increasing functions f; : R — R, we define

f(@) = (fi(e) ey € RY
and, given X C R, we define
fX)={f(z):z € X}.
Moreover, fV is the NTU game defined by
V() = {(fi(z))ies € R® 2 € V($)}
for all S C N.

Ordinal invariance A value ¢ is ordinal if it is not affected by order-preserving changes in utility, i.e.,

given (fi)ien with f; : R — R strictly increasing,
o(fV) = f(e(V)).

A particular class of NTU games are Transfer-Utility (TU) games. Formally, V is a TU game if there
exists v : 2 — R with v() = 0 such that

V(S) = {x eRY: le < v(S)}

les



for all S C N. In that case, we say that V can be represented as a TU game v. It is straightforward to
check that any TU game belongs to SC.

An NTU game that can be represented as a TU game v is superadditive if and only if v(S) + v(T) <
v(SUT) for all S, C N with SNT = 0. Let STU denote the set of superadditive TU games.

Another particular class of NTU games are bargaining problems. These are NTU games in which
unanimity is required to reach an agreement, and otherwise an status quo, or default payoff allocation, is
implemented.

Formally, V' is a bargaining problem if V(S) = [],cg4(—00,d;] for all S ¢ N. Hence, a bargaining
problem V is completely determined by the pair (V(N),d).

The ordinal Shapley-Shubik rule applies for bargaining problems in SC. Let a = (a1,az,a3) € RY.
Then, there exists a unique point T = (T1, T2, T3), called ground point for a, such that the points (a1, Z2, Z3),

(Z1,a2,%3), (%1, T2,a3) are all on OV (N) (see Figure 1).
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Figure 1: Position of the disagreement points and ground point in V() assuming a = (0,0, 0).

When a belongs to the interior of V(IV), its ground point Z does not belong to V(N), and vice versa.
However, the ground point is always closer to the Pareto surface. The ordinal Shapley-Shubik rule is
defined as the limit point of the sequence of successive ground points that begins with the status quo, i.e.,

o(V) = lim o'

t— oo

where a® = d and o't is the (unique) ground point of a’.

The ordinal Shapley-Shubik rule is efficient, anonymous, individually rational, and ordinal (Safra and
Samet, 2004).

Notice that the ordinal Shapley-Shubik rule is defined in bargaining problems, not in general NTU
games. This means that 2-player subcoalition worths (V' (S) with | S| = 2) are not taken into consideration.’
As far as we know, no ordinal value has been defined for 3-player NTU games yet.

In next subsections, we extend this definition to general NTU games so that the worth of proper

subcoalitions are taken into account.

L As opposed, 1-player subcoalition worths V' ({i}) are taken into consideration since they are determined by the

status quo d.



3. AN ORDINAL VALUE FOR GENERAL NTU GAMES

A trivial extension of the ordinal Shapley-Shubik rule can be achieved by maintaining the same defini-
tion without taking into account the role of two-player coalitions, i.e., V(S) with |S| = 2. As opposed, we

aim to extend this value taking into account these worths. We use the following definition:

Definition 2 Given a three-player NTU game V', a baseline for V is a point 2V € RN such that z% €
POV (S)) for all S C N with |S| = 2.

Existence and unicity of a baseline point is guaranteed in strongly comprehensive NTU games, as next

result shows:

Proposition 1 Given V € SC, there exists a unique ¥ € RY such that 2% € OV (S) for all S C N with
|S| = 2.

An important feature of 2" is that it is ordinal. However, it does not take into account (V ({i}))ien,
i.e., the role of one-player coalitions.

Hence, our extension will consider the following intermediate value:
T = max{di,mzy} (1)
for all t € N.
Remark 1 IfV is a bargaining problem, then z* = ¥ = d.

Recall that d; = max V ({i}) for all i € N.
We then define
SS(V) = lim o'
t—o0
where a® = z* and '™ is the (unique) ground point of a'.
Under Remark 1, SS generalizes the ordinal Shapley-Shubik rule and, for general NTU games, it takes
into account the worth of 2-player coalitions. In general, the ordinal Shaple-Shubik value is defined as

follows:

Ordinal Shapley-Shubik value Given a three-player NTU game, a point SS(V) € R" is an ordinal
Shapley-Shubik value if there exists a baseline 2V for V such that SS(V) = im0 a® where a® = z*

defined as x; = max{d;,z} } for all i € V, and a'™" is a ground point of a’ for all a’.

The ordinal Shapley-Shubik value is a singleton when V is strongly comprehensible, as for example in

TU games.
Theorem 1 The ordinal Shapley-Shubik value is efficient, ordinal, and anonymous.
Next result provides an explicit formula for ¥ when V can be represented by a TU game.

Lemma 1 Assume N = {i,j,k} and V can be represented as a TU game v. Then,

b = WUEI) o kD = ol k) o)

Next result provides an explicit formula for SS in TU games.

Proposition 2 Assume N = {i,j,k} and V can be represented as a TU game v. Then,

2 — max {v( (i, 102D o4 ) = (LK) }

and N )
su(v) = o7 + P = Znew i BZ’EN &

for all i,7,k € N.



Example 1 AssumeV can be represented as a TU game v given by v({i}) = 0 for alli € N, v({1,2}) = 60,
v({1,3}) = 30, v({2,3}) = 24, and v(N) = 72. In this case, ¥ = (33,27, —3). Hence, z* = (33,27,0)
and thus SS(V) = (37,31,4). As opposed, the Shapley value is (31,21,13) and the nucleolus is (36,30, 6).

As it can be checked in Example 1, the ordinal Shapley-Shubik value belongs to the core. This result

holds in general for TU games with nonempty core, as next Theorem shows.
Theorem 2 IfV € STU and Core(V) # 0, then SS(V) € Core(V).

Next example shows that superadditivy in the previous result is essential, as non-superaditive games

do not guarantee a core allocation even if such allocations exist.

Example 2 AssumeV can be represented as a TU game v given by v({i}) = 0 for alli € N, v({1,2}) = 60,
v({1,3}) = 30, v({2,3}) = —60, and v(N) = 72. This game is not superadditive because v({2,3}) <
v({2}) +v({3}). In this case, z¥ = (75, —15,—45). Hence, ™ = (75,0,0) and thus SS(V) = (74, -1, —1),
which does not belong to the core because SS2(V) < v({2}) and SS3(V) < v({3}). Similarly, the Shapley
value, (59,14, —1), does not belong to the core. As opposed, the nucleolus, (45,21,6), does belong to the

core.

4. WINIKUNKA MOUNTAIN

In this section, we apply the new defined solution to a real-situation based on the Winikunka mountain
in Peru. The Winikunka mountain, also known as Vinicunca or the “siete colores” (seven colors) mountain,
situated at 5200 meters above sea level, has become a significant source of income for the surrounding
communities, generating jobs and economic opportunities. Nonetheless, concerns over the environmental
impact and cultural degradation have intensified, raising questions about the long-term sustainability of
the tourism boom. We can recognize three different players in this situation: Local communities, tourist
businesses and mining firms.

Assume N = {1,2,3} where 1 represents the mining industry, 2 the tourism industry, and 3 the local
communities. The mining industry is free to choose the level of mining activity in the landscape, normalized
tom € [0,1], so that m = 0 is the minimum (no activity) and m = 1 is the maximum activity. The tourism
industry can choose a limit on the number of tourists, normalized to ¢ € [0, 1], where ¢t = 0 is the minimum
(no tourists allowed) and ¢ = 1 is the maximum (no restriction on the number of tourists). Finally, the
local communities can organize and hold protests and road blockades, normalized to p € [0, 1], where p = 0
means no protest and p = 1 means a total block of roads. Both tourism and mining activity are reduced
proportionally to 1 — p.

We assume that the mining industry prefers a high mining activity (i.e., high m and low p). Analogously,
the tourism industry prefers a high ¢ and a low p, and the local communities prefer low mining activity, ¢
as close as possible to some optimal t° € (0,1), that avoids over-tourism, and also a low p.

Other marginal transfers are possible but negligible with respect to the factor given by m, ¢, and
p. However, we need to take into consideration the possible assets r and s that agent 2 (the tourism
industry) can produce to create marginal benefits € and ¢ to the mining industry and the local communities,
respectively. For example, s can be interpreted as free or cheap accommodation for locals in touristic
resorts. We also assume € > € as, with equal effort from the tourist industry, the benefit that can be
supplied to local communities is bigger than to the mining industry.

The set of alternatives is then given by

A={(m,t,p,r,s) :m,t,p€[0,1],r,5 > 0}.



Let

7 = min {t, (1 = p)(1 — m)}
be the relative number of tourists, which depends on the quota (t), the mining activity (the more mining
activity, the fewer tourists), and the protests (the more demonstrations, the fewer number of tourists).

Player’s preferences are represented by the following utility functions:

up = (1 —p)m+er
Up =T —T—38§

U3=1—a|7—t0|—ﬁ(1—p)m—*yp+ss

where «, 8,y are parameters that determine the relative importance of, respectively, tourism, mining, and

protests for locals. In particular
e « represents the (relative) importance of tourism for locals,
e [ represents the (relative) importance of the environment for locals, and
e v represents the (relative) disruption of protests for locals.

We estimate some reasonable values for each of the parameters.

Disruption of protests for locals Question V88 in the 2012 WVS survey in Peru (Inglehart et al.,
2014) stated stated “Political action: joining unofficial strikes”. Peruvians’ normalized opinion (so
that 0 is completely for and 1 is completely against) was 0.653 + 0.03. Hence, we assume vy = 2/3,

inside the confidence interval.

Importance of the environment for locals Question V78 in the 2012 WVS survey in Peru (Inglehart
et al., 2014) stated stated “Schwartz: It is important to this person looking after the environment”.
Peruvians’ normalized opinion (so that 0 is not important and 1 is very important) was 0.675+0.03.

Hence, we assume 8 = 2/3, inside the confidence interval.

Importance of tourism for locals Question V81 in the 2012 WVS survey in Peru (Inglehart et al.,
2014) stated “Protecting environment vs. Economic growth”. Peruvians’ normalized opinion (so
that 0 is everybody prefers protecting environment and 1 is everybody prefers economic growth) was
0.314 £ 0.03, with ratio 2.19. Hence, we assume /a = 2, which implies o = 3/2 = 1/3.

Optimal quota of tourists (t°) In Santorini (Greece), cruise ship visitors have been capped at 8000
per day due to overtourism after years in which the island was receiving up to 18000. Hence, t°
should be around 8000,/18000 ~ 0.44. Machu Picchu (Peru) reached a peak of 4488 visitors per day.

UNESCO (MINCETUR, 2018) believes the limit should be 2500 to preserve the ruins, so t should

be around 2500/4488 ~ 0.56. Hence, we assume an intermediate value, = %

Hence:

1
U3:1—*

2
37" 3 —=(1—-pm—=p+es

2 3 3

1’ 2
1 2
:1—6|27—1\—g((1—p)m+p)+ss.

We normalize these utilities so that, apart from the marginal transfers, the maximum a player can get is

1 and the minimun is 0. Hence, the new utility functions are the following:

U =u; =(1—p)m+er

U2 =U2 =T —T — S8

6 1 1 4 6
Ts= us—==1— |21 — 1| — = ((1 Ocs.
Us = us — ¢ 127 =1 = (A =p)m+p) + ces



This normalization does not affect our results because the ordinality of SS. The other solutions (Harsanyi

value, Shapley NTU value and consistent value) are also independent of utility changes using an affine

map.
We can then compute the worth of each coalition:
e V({1}) = (—o0,d1] where

t,p,T

d1 = max (minﬂ1> =0.

e V({2}) = (—o0,dz] where
dy = max (minﬂg) - 0.

t,r,s m,p

o V({3}) = (—o0,ds] where

p m,t,s

d3 = max (min Hg) =0.

V({1,2}) is given by the marginal transfers from 2 to 1, since p = 1 removes any benefit of cooper-

ation:

V({{1,2}) ={(er,—r) :r >0} — REQ}
:{(w17502) cx1 + exe < 07:52 < 0}.

V({1,3}) is given by p = 0 and the agreement level of m, whereas t = r = s = 0 harms players 1

and 3 as much as possible:

V({1,3}) = { <m7 %(1 - m)> :m e [0, 1}} — R{13

:{(1’1,373)1371 +§x3 <lz1 <1,z3 < %}

e V({2,3}) is given by the marginal transfers from 2 to 3, since m = 1 removes any benefit of

cooperation:

V({2,3}) ={(—s,es) : s > 0} — Rf,s}
={(z2,23) : x2 < 0,exs + x3 < 0}.

V(N) is given by p = 0, the agreement levels of m € [0,1] and ¢ € [.5, 1], and the marginal transfers

from agent 2:

V(N) ={(t1,2,73),: m € [0,1],t € [.5,1],7,5 > 0} — RY
={(z1,22,23) : &1 + z2 < 1,421 + 222 + Bz < 6,421 + 6ex2 + Srs < 5+ 3¢}
N{(x1,22,23):6 (1 +¢)x1 + 6exa +5x3 <6(1+¢€)}
N{(x1,x2,23) : x2 < 1,229 + 523 < 6,6ex2 + dxg < 5+ 3¢}

N {(z1, z2,x3) : 6ex1 + Gecxa + bews < 6e}

which is depicted (together with V' ({1,3}) in Figure 2.
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Figure 2: Pareto frontiers of V(N) (thicker lines) and V({1,3}) (thinner line) in the positive
quadrant, together with the ordinal Shapley-Shubik value (SS), the Harsanyi value (Ha), the
Shapley NTU value (Sh) and the consistent value (Co) for this game.

We compute the ordinal Shapley-Shubik value and compare it to the Harsanyi value, the Shapley NTU

value, and the consistent value.

Ordinal Shapley-Shubik value It is straightforward to check that 2V = (556:467 55;446, 5;1;46) and

Setde’
can provide respectively to the mining industry and to the local communities. As compared with

hence z* = ( de 0, ﬁ) . Recall that € and € are the marginal benefits that the tourism industry

the benefit obtained by ore extraction, we can assume ¢ is negligible with respect to €, and hence z*

is approximately: z* & (0, 0, %) from where we deduce

1 2 13
SS(V) ~ (E§ﬁ>

Lo¢= %, and p =r = s = 0, i.e., a relatively low mining activity, a slight

attainable by setting m = 5,

over tourism, and no protests nor marginal transfers.

Harsanyi value There exists a Harsanyi value obtained by setting A = (22, & 25) 8 = 12 N _ 3

1 617 612
113
H(I(V): (5,5,5)

attainable by setting m = %, te [%, 1} (hence, T = %), and p =r = s = 0, i.e., half mining activity,

and £% = 0 otherwise, which results in

no over tourism, no protests, and no marginal transfers.

114+10e’ 11410’ 11410e

v ({1,3}) = M(N) = 1(151?857 and v*(S) = 0 otherwise, which results in Sh(v*) = (221385 ,0, 2213&)

Shapley NTU value There exists a Shapley NTU value obtained by setting X\ = ( 6+8e Se 5 )7

and

6 + 5¢ 0 6 + 5¢ 1 6 + 5¢e
h = — [
Sh(V) ((22 +20e)A1 7 A2’ (22 + 205))\3) (2’0’ 10 )



attainable by setting m = %, t e [%, 1] (hence, 7 = %), s = %, and p = r = 0, i.e., half mining
activity, no over tourism, no protests, and the tourist industry (inefficiently) transfers all its benefit
of cooperation to the local communities. Notice that this payoff allocation converges to (.5,0,.6),

weakly below (.5,.5,.6), as € approaches zero.

Consistent value There exists a unique consistent value obtained by setting A{*3} = (%, g), AN =

(5 &5.3), A ({1,3}) =2, M (N) = 4%, and o (S) = 0 otherwise, which results in

1 coon (113
o) =5 X o= (351
rellN
attainable, as the Harsanyi value, by setting m = 1, ¢ € [3,1] (hence, 7 = 1), and p=7r =5 =0,

i.e., half mining activity, no over tourism, no protests, and no marginal transfers.
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