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ABSTRACT

In cooperative game theory it is known that two-person bargaining problems have no relevant

ordinal solution. For three-player bargaining problems, Shapley and Shubik propose an ordinal

rule. However, this rule does not take into account the worth of proper subcoalitions of size

2. In this paper, we fill this gap by proposing a generalization of the Shapley-Shubik rule for

Non transferable utility games. The resulting solutions, when applied to transferable utility

games, always belong to the core, which makes it a relevant alternative to other core-selectors

such as the nucleolus. We also apply the new solution to a practical case related to mining

and natural resources management.

Keywords: NTU-games, Ordinal Shapley-Shubik value, mining, natural resources management.

1. INTRODUCTION

Ordinal bargaining have been a classical research topic in economics and has also recently become an

interesting issue in computer science (Aziz et al., 2016; Zhan et al., 2018; Erlich et al., 2018; Gafni et

al., 2021; Hazon et al., 2024). Assume there are gains of cooperation when various agents form coalitions

but there also conflicts on which coalition should be formed and how the gains should be shared. Hence,

the distribution of gains involves bargaining not only between individual agents but also among coalitions.

When each agent anticipates its opportunity cost when actually participating in each coalition, its foregone

reward may take into account this opportunity cost.

A key aspect is the preference of each agent, usually represented by a utility function. A utility

function assigns for each agent a numerical value to each possible outcome, so that a higher utility reflects

a preference relation for the agent. However, any given preference can be represented by many possible

utility functions.

Hence, a very desirable property for a value is ordinal invariance. In cooperative games, a value satisfies

ordinal invariance when it remains unaffected by order-preserving transformations of the agents’ utilities.

Shapley (1969) demonstrates that, among efficient values, only the dictatorial ones, i.e., those that give a

particular agent all the bargaining power, maintain ordinal invariance for two agents.

Take for example the symmetric case in which there are two players, say player 1 and player 2, who

have to agree on how to divide one unit of some desirable asset. Assuming selfishness, the utilities can

be represented by u1(x, y) = x and u2(x, y) = y, where (x, y) means that player 1 receives x and player 2

receives y. In this example, the Pareto frontier of the utility that players can achieve by themselves when

agreeing to cooperate lies on the set D = {(x, 1−x) : x ∈ [0, 1]}. Assume that an optimal solution depends

only on D (the utility space) and specifies that the share of the dollar should assign utilities (α, 1−α) ∈ D

for some α ∈ [0, 1].



Assume now we represent player 1’s preferences by the (equivalent) utility function u′
1(x, y) = x3.

Hence, the utility space turns into D′ = {(x3, 1−x) : x ∈ [0, 1]}. The previous optimal solution, if ordinal,

should then assign utilities (α3, 1− α) ∈ D′.

Assume we also change player 2’s utility to the (equivalent) function u′′
2 (x, y) = 1 + (y − 1)3. Hence,

the utility space turns back into D′′ = {(x3, 1 − x3) : x ∈ [0, 1]} = D. The optimal and ordinal solution

should then, on one hand, assign utilities (α3, 1 − α3) ∈ D (because ordinality), and, on the other hand,

(α, 1−α) ∈ D (because the only relevant information is given byD′′ = D). Thus, α = α3 and 1−α = 1−α3,

which, together with α ∈ [0, 1], is only possible when α = 0 (giving all the bargaining power to player 2)

or α = 1 (giving all the bargaining power to player 1). Symmetry is thus incompatible with optimality

and ordinality.

However, this example does not extend to scenarios involving more than two agents. Shubik (1982)

initially presents a rule that is efficient, symmetric, and maintains ordinal invariance for three agents.

Although the origin of this rule is not explicitly mentioned in Shubik (1982), Pérez-Castrillo and Wettstein

(2006)[p. 297] attribute it toShapley (1969). Moreover, Roth (1979)[p. 72-73] discusses a three-agent

ordinal bargaining rule attributed to Shapley and Shubik in a 1974 working paper. Subsequently, in line

with the works of Kıbrıs (2004b,a), we refer to it as the Shapley-Shubik rule.

Kıbrıs (2004a) delineates a category of three-agent problems that encompass all bargaining problems.

Within this category, the ordinal Shapley-Shubik rule aligns with both the Egalitarian rule (Kalai, 1977)

and the Kalai-Smorodinsky rule (Kalai and Smorodin- sky, 1975). Furthermore, it stands as the sole

symmetric member among a set of ordinal monotone path rules. Kıbrıs (2004b) further demonstrates the

deep connection between the ordinal Shapley-Shubik rule and a solution set defined by Bennett (1997) for

multilateral bargaining problems. Additionally, Kıbrıs (2012) outlines the characterization of the ordinal

Shapley-Shubik rule utilizing a less stringent version of the Independence of Irrelevant Alternatives (Nash,

1950). From a non-cooperative point of view, Vidal-Puga (2015) presents a game that yields the ordinal

Shapley-Shubik rule in subgame perfect equilibria.

Conversely, Samet and Safra (2005) expand the ordinal Shapley-Shubik rule to accommodate scenarios

with more than three agents, employing methodologies akin to those in the work of O’Neill et al. (2004).

Additionally, Safra and Samet (2004) introduce another set of ordinal solutions.

Adopting an alternative methodology,Pérez-Castrillo and Wettstein (2006)as well as Zhang and Zhang

(2008) leverage the inherent physical framework that produces the frontier of utility possibilities. This

approach enables Pérez-Castrillo and Wettstein (2006) to establish an ordinal expansion for the Shapley

value applicable to any number of agents. Calvo and Peters (2005) present a blended method, examining

scenarios involving both ordinal and cardinal agents. Unlike the ordinal Shapley-Shubik value and the

extension by Samet and Safra (2005), Pérez-Castrillo and Wettstein (2006) and Calvo and Peters (2005)

permit partial agreements within subcoalitions, thus referring to non-transferable utility games.

In this paper, we present a generalization of the ordinal Shapley-Shubik rule to the case of non-

transferable utility games. As opposed to Pérez-Castrillo and Wettstein (2006) and Zhang and Zhang

(2008), the problem is formulated in the utility space. Hence, we keep the classical assumption that only

utilities that coalitions can achieve by themselves are relevant in the game. Moreover, as opposed to

Calvo and Peters (2005), we only consider ordinal players. We also show that our generalization satisfies

core-selection when restricted to transfer-utility games, which makes it a reasonable alternative to other

well-known values such as the nucleolus or the Shapley value.

The paper is organized as follows. In Section 2, we present the model and describe some previous

results. In Section 3, we define a generalization of the ordinal Shapley-Shubik rule and prove some of its

properties. Proofs can be required to the authors. In Section 4, we implement this theoretical framework

in a practical context by investigating its applicability within the specific setting of Winikunka Mountain,

also recognized as the Seven Color Mountain, located in Peru.



2. NOTATION AND PREVIOUS RESULTS

Let N = {1, 2, 3} be the fixed set of agents. For each nonempty S ⊆ N and x, y ∈ RS , x ≤ y means

xi ≤ yi for all i ∈ S, x ≪ y means xi < yi for all i ∈ S, and x < y means x ≤ y and x ̸= y.

Given S ⊂ N and x ∈ RN , xS is the restriction of x in S, i.e., xS ∈ RN is defined as (xS)i = xi for all

i ∈ S.

Given S ⊆ N and a surface A ⊂ RS , a point x ∈ A is Pareto optimal in A if there is no y ∈ A such

that x < y. Let PO (A) denote the set of Pareto optimal points in A. A point x ∈ A is weakly Pareto

optimal in A if there is no y ∈ A such that x ≪ y. Let WPO (A) denote the set of weakly Pareto optimal

points in A.

Definition 1 A (three-player) Non-transferable utility (NTU) game is a characteristic function V : S ∈
2N → V (S) ∈ RS where V (S) is the set of feasible utility assignments for each coalition S, so that each

V (S) is non-empty, closed, comprehensive and bounded from above.

It is clear from the definition of a NTU game V that there exists some d ∈ RN such that V ({i}) =

(−∞, di] for all i ∈ N .

An NTU game V is strongly comprehensive if, for all S ⊆ N , WPO (V (S)) = PO (V (S)) and for each

x ∈ V (S), y ≤ x implies y ∈ V (S). Let SC denote the set of all strongly comprehensive NTU games.

When v ∈ SC, we write ∂V (S) instead of P (V (S)) or WP (V (S)).

Given a class of NTU games G, a value ϕ on G is a function that assigns to each NTU game V ∈ G a

subset ϕ(V ) ⊂ RN of payoff allocations that represent the utility assigned to each agent in the game.

Three known values for NTU games are the Harsanyi value (Harsanyi, 1963; Imai, 1983; Hart, 1985;

de Clippel et al., 2002), the Shapley NTU value (Shapley, 1969; Au- mann, 1985), and the consistent value

(Maschler and Owen, 1992; de Clippel et al., 2002; Hart, 1994, 2005). All three of them coincide with the

Shapley value (Shapley, 1953) for TU games and with the Nash rule for bargaining problems:

Harsanyi value A point Ha(V ) ∈ PO(V (N)) is a Harsanyi value of V if there exists λ ∈ RN
+ such that,

for each coalition S ⊆ N , there exist Hλ,S ∈ PO(V (S)) and ξλ,S ∈ R such that Ha(V ) = Hλ,N and

λiH
λ,S
i =

∑
T⊆S:i∈T

ξλ,T

for all i ∈ S ⊆ N .

Shapley NTU value A point Sh(V ) ∈ PO(V (N)) is a Shapley NTU value of V if there exists λ ∈ RN
++

such that λiShi(V ) = Shi(v
λ) for all i ∈ N , where Sh(vλ) is the Shapley value of the TU game vλ

defined as vλ(∅) = 0 and

vλ(S) = max
x∈V (S)

∑
i∈S

λixi

for each S ⊆ N \ {∅} whenever these maxima exist.

Consistent value Let ΠN denote the set of orders of the agents in N . For each i ∈ N and π ∈ ΠN , let

Pπ
i = {j ∈ N : π(j) < π(i)} be the set of predecessor of player i in π. A point Co(V ) ∈ PO(V (N))

is a consistent value of V if there exist λS ∈ RS
++ for each S ⊆ N such that vλ

S

(S) is well-defined

for each S ⊆ N and

Coi(V ) =
1

|ΠN |
∑

π∈ΠN

Coπi (V )

for all i ∈ N , where Coπ(V ) ∈ RN is defined inductively as

Coπi (V ) =
1

λ
Pπ
i ∪{i}

i

vλ
Pπ
i ∪{i}

(Pπ
i ∪ {i})−

∑
j∈Pπ

i

λ
Pπ
i ∪{i}

j Coπj (V )


for all i ∈ N .



Desirable properties of a value are efficiency, anonymity, individual rationality, core selection, and

ordinal invariance. We describe each of these properties.

Efficiency A value ϕ is efficient when ϕ(V ) ⊆ PO(V (N)) for each NTU game V .

Let Π be the set of all permutations of N , with generic element π. Given π ∈ ΠN , S ⊆ N and A ⊆ RS ,

we define π(S) = {π(i) : i ∈ S} and π(A) as

π(A) =
{(

xπ(i)

)
i∈S

∈ Rπ(S) : x ∈ A
}
.

Moreover, πV is the NTU game defined by πV (π(S)) = V (S) for all S ⊆ N.

Anonymity A value ϕ is anonymous when it is covariant with respect to any permutation of players, i.e,

given π ∈ ΠN ,

ϕπ(i)(πV ) = ϕi(V )

for all i ∈ N .

An NTU game V is superadditive if V (S)× V (T ) ⊆ V (S ∪ T ) for all S, T ⊂ N with S ∩ T = ∅.

Individual rationality A value ϕ is individually rational if d ≤ x for all x ∈ ϕ(V ) for each superadditive

NTU game V.

The core of an NTU game V is defined as the set of efficient payoff allocations that cannot be improved

by any coalition, i.e.,

Core(V ) = {x ∈ PO(V (N)) : xS /∈ Int(V (S))∀S ⊂ N}

where

Int(V (S)) = V (S) \WPO(V (S))

is the interior of V (S), i.e., those points that can be improved by coalition S, in the sense that given

x ∈ Int(V (S)), there exist payoffs allocations in V (S) that improve xi for each i ∈ S.

Core selection A value ϕ is a core selector if ϕ(V ) ⊆ Core(V ) whenever Core(V ) ̸= ∅.

Given x ∈ RN and (fi)i∈N a vector of strictly increasing functions fi : R → R, we define

f(x) = (fi(xi))i∈N ∈ RN

and, given X ⊂ RN , we define

f(X) = {f(x) : x ∈ X} .

Moreover, fV is the NTU game defined by

fV (S) =
{
(fi(xi))i∈S ∈ RS : x ∈ V (S)

}
for all S ⊆ N.

Ordinal invariance A value ϕ is ordinal if it is not affected by order-preserving changes in utility, i.e.,

given (fi)i∈N with fi : R → R strictly increasing,

ϕ(fV ) = f(ϕ(V )).

A particular class of NTU games are Transfer-Utility (TU) games. Formally, V is a TU game if there

exists v : 2N → R with v(∅) = 0 such that

V (S) =

{
x ∈ RS :

∑
l∈S

xl ≤ v(S)

}



for all S ⊆ N . In that case, we say that V can be represented as a TU game v. It is straightforward to

check that any TU game belongs to SC.
An NTU game that can be represented as a TU game v is superadditive if and only if v(S) + v(T ) ≤

v(S ∪ T ) for all S, T ⊂ N with S ∩ T = ∅. Let ST U denote the set of superadditive TU games.

Another particular class of NTU games are bargaining problems. These are NTU games in which

unanimity is required to reach an agreement, and otherwise an status quo, or default payoff allocation, is

implemented.

Formally, V is a bargaining problem if V (S) =
∏

i∈S(−∞, di] for all S ⊊ N . Hence, a bargaining

problem V is completely determined by the pair (V (N), d).

The ordinal Shapley-Shubik rule applies for bargaining problems in SC. Let a = (a1, a2, a3) ∈ RN .

Then, there exists a unique point x̄ = (x̄1, x̄2, x̄3), called ground point for a, such that the points (a1, x̄2, x̄3),

(x̄1, a2, x̄3), (x̄1, x̄2, a3) are all on ∂V (N) (see Figure 1).

u1

u2

u3

(a1, x̄2, x̄3)

(x̄1, a2, x̄3)

(x̄1, x̄2, a3)

a

x̄

Figure 1: Position of the disagreement points and ground point in V (N) assuming a = (0, 0, 0).

When a belongs to the interior of V (N), its ground point x̄ does not belong to V (N), and vice versa.

However, the ground point is always closer to the Pareto surface. The ordinal Shapley-Shubik rule is

defined as the limit point of the sequence of successive ground points that begins with the status quo, i.e.,

φ(V ) = lim
t→∞

at

where a0 = d and at+1 is the (unique) ground point of at.

The ordinal Shapley-Shubik rule is efficient, anonymous, individually rational, and ordinal (Safra and

Samet, 2004).

Notice that the ordinal Shapley-Shubik rule is defined in bargaining problems, not in general NTU

games. This means that 2-player subcoalition worths (V (S) with |S| = 2) are not taken into consideration.1

As far as we know, no ordinal value has been defined for 3-player NTU games yet.

In next subsections, we extend this definition to general NTU games so that the worth of proper

subcoalitions are taken into account.

1As opposed, 1-player subcoalition worths V ({i}) are taken into consideration since they are determined by the

status quo d.



3. AN ORDINAL VALUE FOR GENERAL NTU GAMES

A trivial extension of the ordinal Shapley-Shubik rule can be achieved by maintaining the same defini-

tion without taking into account the role of two-player coalitions, i.e., V (S) with |S| = 2. As opposed, we

aim to extend this value taking into account these worths. We use the following definition:

Definition 2 Given a three-player NTU game V , a baseline for V is a point xV ∈ RN such that xV
S ∈

PO(V (S)) for all S ⊂ N with |S| = 2.

Existence and unicity of a baseline point is guaranteed in strongly comprehensive NTU games, as next

result shows:

Proposition 1 Given V ∈ SC, there exists a unique xV ∈ RN such that xV
S ∈ ∂V (S) for all S ⊂ N with

|S| = 2.

An important feature of xV is that it is ordinal. However, it does not take into account (V ({i}))i∈N ,

i.e., the role of one-player coalitions.

Hence, our extension will consider the following intermediate value:

x∗
i = max

{
di, x

V
i

}
(1)

for all i ∈ N .

Remark 1 If V is a bargaining problem, then x∗ = xV = d.

Recall that di = maxV ({i}) for all i ∈ N .

We then define

SS(V ) = lim
t→∞

at

where a0 = x∗ and at+1 is the (unique) ground point of at.

Under Remark 1, SS generalizes the ordinal Shapley-Shubik rule and, for general NTU games, it takes

into account the worth of 2-player coalitions. In general, the ordinal Shaple-Shubik value is defined as

follows:

Ordinal Shapley-Shubik value Given a three-player NTU game, a point SS(V ) ∈ RN is an ordinal

Shapley-Shubik value if there exists a baseline xV for V such that SS(V ) = limt→∞ at where a0 = x∗

defined as xi = max{di, xV
i } for all i ∈ V , and at+1 is a ground point of at for all at.

The ordinal Shapley-Shubik value is a singleton when V is strongly comprehensible, as for example in

TU games.

Theorem 1 The ordinal Shapley-Shubik value is efficient, ordinal, and anonymous.

Next result provides an explicit formula for xV when V can be represented by a TU game.

Lemma 1 Assume N = {i, j, k} and V can be represented as a TU game v. Then,

xV
i =

v({i, j}) + v({i, k})− v({j, k})
2

. (2)

Next result provides an explicit formula for SS in TU games.

Proposition 2 Assume N = {i, j, k} and V can be represented as a TU game v. Then,

x∗
i = max

{
v({i}), v({i, j}) + v({i, k})− v({j, k})

2

}
(3)

and

SSi(V ) = x∗
i +

v(N)−
∑

l∈N x∗
l

3
(4)

for all i, j, k ∈ N.



Example 1 Assume V can be represented as a TU game v given by v({i}) = 0 for all i ∈ N , v({1, 2}) = 60,

v({1, 3}) = 30, v({2, 3}) = 24, and v(N) = 72. In this case, xV = (33, 27,−3). Hence, x∗ = (33, 27, 0)

and thus SS(V ) = (37, 31, 4). As opposed, the Shapley value is (31, 21, 13) and the nucleolus is (36, 30, 6).

As it can be checked in Example 1, the ordinal Shapley-Shubik value belongs to the core. This result

holds in general for TU games with nonempty core, as next Theorem shows.

Theorem 2 If V ∈ ST U and Core(V ) ̸= ∅, then SS(V ) ∈ Core(V ).

Next example shows that superadditivy in the previous result is essential, as non-superaditive games

do not guarantee a core allocation even if such allocations exist.

Example 2 Assume V can be represented as a TU game v given by v({i}) = 0 for all i ∈ N , v({1, 2}) = 60,

v({1, 3}) = 30, v({2, 3}) = −60, and v(N) = 72. This game is not superadditive because v({2, 3}) <

v({2}) + v({3}). In this case, xV = (75,−15,−45). Hence, x∗ = (75, 0, 0) and thus SS(V ) = (74,−1,−1),

which does not belong to the core because SS2(V ) < v({2}) and SS3(V ) < v({3}). Similarly, the Shapley

value, (59, 14,−1), does not belong to the core. As opposed, the nucleolus, (45, 21, 6), does belong to the

core.

4. WINIKUNKA MOUNTAIN

In this section, we apply the new defined solution to a real-situation based on the Winikunka mountain

in Peru. The Winikunka mountain, also known as Vinicunca or the “siete colores” (seven colors) mountain,

situated at 5200 meters above sea level, has become a significant source of income for the surrounding

communities, generating jobs and economic opportunities. Nonetheless, concerns over the environmental

impact and cultural degradation have intensified, raising questions about the long-term sustainability of

the tourism boom. We can recognize three different players in this situation: Local communities, tourist

businesses and mining firms.

Assume N = {1, 2, 3} where 1 represents the mining industry, 2 the tourism industry, and 3 the local

communities. The mining industry is free to choose the level of mining activity in the landscape, normalized

to m ∈ [0, 1], so that m = 0 is the minimum (no activity) and m = 1 is the maximum activity. The tourism

industry can choose a limit on the number of tourists, normalized to t ∈ [0, 1], where t = 0 is the minimum

(no tourists allowed) and t = 1 is the maximum (no restriction on the number of tourists). Finally, the

local communities can organize and hold protests and road blockades, normalized to p ∈ [0, 1], where p = 0

means no protest and p = 1 means a total block of roads. Both tourism and mining activity are reduced

proportionally to 1− p.

We assume that the mining industry prefers a high mining activity (i.e., highm and low p). Analogously,

the tourism industry prefers a high t and a low p, and the local communities prefer low mining activity, t

as close as possible to some optimal t0 ∈ (0, 1), that avoids over-tourism, and also a low p.

Other marginal transfers are possible but negligible with respect to the factor given by m, t, and

p. However, we need to take into consideration the possible assets r and s that agent 2 (the tourism

industry) can produce to create marginal benefits ϵ and ε to the mining industry and the local communities,

respectively. For example, s can be interpreted as free or cheap accommodation for locals in touristic

resorts. We also assume ε > ϵ as, with equal effort from the tourist industry, the benefit that can be

supplied to local communities is bigger than to the mining industry.

The set of alternatives is then given by

A = {(m, t, p, r, s) : m, t, p ∈ [0, 1], r, s ≥ 0} .



Let

τ = min {t, (1− p)(1−m)}

be the relative number of tourists, which depends on the quota (t), the mining activity (the more mining

activity, the fewer tourists), and the protests (the more demonstrations, the fewer number of tourists).

Player’s preferences are represented by the following utility functions:

u1 = (1− p)m+ ϵr

u2 = τ − r − s

u3 = 1− α
∣∣τ − t0

∣∣− β(1− p)m− γp+ εs

where α, β, γ are parameters that determine the relative importance of, respectively, tourism, mining, and

protests for locals. In particular

• α represents the (relative) importance of tourism for locals,

• β represents the (relative) importance of the environment for locals, and

• γ represents the (relative) disruption of protests for locals.

We estimate some reasonable values for each of the parameters.

Disruption of protests for locals Question V88 in the 2012 WVS survey in Peru (Inglehart et al.,

2014) stated stated “Political action: joining unofficial strikes”. Peruvians’ normalized opinion (so

that 0 is completely for and 1 is completely against) was 0.653 ± 0.03. Hence, we assume γ = 2/3,

inside the confidence interval.

Importance of the environment for locals Question V78 in the 2012 WVS survey in Peru (Inglehart

et al., 2014) stated stated “Schwartz: It is important to this person looking after the environment”.

Peruvians’ normalized opinion (so that 0 is not important and 1 is very important) was 0.675±0.03.

Hence, we assume β = 2/3, inside the confidence interval.

Importance of tourism for locals Question V81 in the 2012 WVS survey in Peru (Inglehart et al.,

2014) stated “Protecting environment vs. Economic growth”. Peruvians’ normalized opinion (so

that 0 is everybody prefers protecting environment and 1 is everybody prefers economic growth) was

0.314± 0.03, with ratio 2.19. Hence, we assume β/α = 2, which implies α = β/2 = 1/3.

Optimal quota of tourists (t0) In Santorini (Greece), cruise ship visitors have been capped at 8000

per day due to overtourism after years in which the island was receiving up to 18000. Hence, t0

should be around 8000/18000 ≈ 0.44. Machu Picchu (Peru) reached a peak of 4488 visitors per day.

UNESCO (MINCETUR, 2018) believes the limit should be 2500 to preserve the ruins, so t0 should

be around 2500/4488 ≈ 0.56. Hence, we assume an intermediate value, t0 = 1
2
.

Hence:

u3 = 1− 1

3

∣∣∣∣τ − 1

2

∣∣∣∣− 2

3
(1− p)m− 2

3
p+ εs

= 1− 1

6
|2τ − 1| − 2

3
((1− p)m+ p) + εs.

We normalize these utilities so that, apart from the marginal transfers, the maximum a player can get is

1 and the minimun is 0. Hence, the new utility functions are the following:

u1 = u1 = (1− p)m+ ϵr

u2 = u2 = τ − r − s

u3 =
6

5
u3 −

1

5
= 1− 1

5
|2τ − 1| − 4

5
((1− p)m+ p) +

6

5
εs.



This normalization does not affect our results because the ordinality of SS. The other solutions (Harsanyi

value, Shapley NTU value and consistent value) are also independent of utility changes using an affine

map.

We can then compute the worth of each coalition:

• V ({1}) = (−∞, d1] where

d1 = max
m

(
min
t,p,r

u1

)
= 0.

• V ({2}) = (−∞, d2] where

d2 = max
t,r,s

(
min
m,p

u2

)
= 0.

• V ({3}) = (−∞, d3] where

d3 = max
p

(
min
m,t,s

u3

)
= 0.

• V ({1, 2}) is given by the marginal transfers from 2 to 1, since p = 1 removes any benefit of cooper-

ation:

V ({1, 2}) = {(ϵr,−r) : r ≥ 0} − R{1,2}
+

= {(x1, x2) : x1 + ϵx2 ≤ 0, x2 ≤ 0} .

• V ({1, 3}) is given by p = 0 and the agreement level of m, whereas t = r = s = 0 harms players 1

and 3 as much as possible:

V ({1, 3}) =
{(

m,
4

5
(1−m)

)
: m ∈ [0, 1]

}
− R{1,3}

+

=

{
(x1, x3) : x1 +

5

4
x3 ≤ 1, x1 ≤ 1, x3 ≤ 4

5

}
.

• V ({2, 3}) is given by the marginal transfers from 2 to 3, since m = 1 removes any benefit of

cooperation:

V ({2, 3}) = {(−s, εs) : s ≥ 0} − R{2,3}
+

= {(x2, x3) : x2 ≤ 0, εx2 + x3 ≤ 0} .

• V (N) is given by p = 0, the agreement levels of m ∈ [0, 1] and t ∈ [.5, 1], and the marginal transfers

from agent 2:

V (N) = {(u1, u2, u3), : m ∈ [0, 1], t ∈ [.5, 1], r, s ≥ 0} − RN
+

= {(x1, x2, x3) : x1 + x2 ≤ 1, 4x1 + 2x2 + 5x3 ≤ 6, 4x1 + 6εx2 + 5x3 ≤ 5 + 3ε}

∩ {(x1, x2, x3) : 6 (1 + ε)x1 + 6εx2 + 5x3 ≤ 6 (1 + ε)}

∩ {(x1, x2, x3) : x2 ≤ 1, 2x2 + 5x3 ≤ 6, 6εx2 + 5x3 ≤ 5 + 3ε}

∩ {(x1, x2, x3) : 6εx1 + 6ϵεx2 + 5εx3 ≤ 6ε}

which is depicted (together with V ({1, 3}) in Figure 2.



u1

u2

u3

(1, 0, 0)

(
1
2 ,

1
2 ,

3
5

)
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(
0, 1, 4

5

)

(
0, 1

2
, 1
)
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(
0, 0, 5+3ε

5

)
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1
2
, 0, 3+ε

5

)
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(
0, 0, 4

5

)
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Figure 2: Pareto frontiers of V (N) (thicker lines) and V ({1, 3}) (thinner line) in the positive

quadrant, together with the ordinal Shapley-Shubik value (SS), the Harsanyi value (Ha), the

Shapley NTU value (Sh) and the consistent value (Co) for this game.

We compute the ordinal Shapley-Shubik value and compare it to the Harsanyi value, the Shapley NTU

value, and the consistent value.

Ordinal Shapley-Shubik value It is straightforward to check that xV =
(

4ϵ
5ε+4ϵ

, −4
5ε+4ϵ

, 4ε
5ε+4ϵ

)
and

hence x∗ =
(

4ϵ
5ε+4ϵ

, 0, 4ε
5ε+4ϵ

)
. Recall that ϵ and ε are the marginal benefits that the tourism industry

can provide respectively to the mining industry and to the local communities. As compared with

the benefit obtained by ore extraction, we can assume ϵ is negligible with respect to ε, and hence x∗

is approximately: x∗ ≈
(
0, 0, 4

5

)
from where we deduce

SS(V ) ≈
(

1

12
,
2

3
,
13

15

)
attainable by setting m = 1

12
, t = 2

3
, and p = r = s = 0, i.e., a relatively low mining activity, a slight

over tourism, and no protests nor marginal transfers.

Harsanyi value There exists a Harsanyi value obtained by setting λ =
(
30
61
, 6
61
, 25
61

)
, ξ{1,3} = 12

61
, ξN = 3

61
,

and ξS = 0 otherwise, which results in

Ha(V ) =

(
1

2
,
1

2
,
3

5

)
attainable by setting m = 1

2
, t ∈

[
1
2
, 1
]
(hence, τ = 1

2
), and p = r = s = 0, i.e., half mining activity,

no over tourism, no protests, and no marginal transfers.

Shapley NTU value There exists a Shapley NTU value obtained by setting λ =
(

6+5ε
11+10ε

, 5ε
11+10ε

, 5
11+10ε

)
,

vλ({1, 3}) = vλ(N) = 6+5ε
11+10ε

, and vλ(S) = 0 otherwise, which results in Sh(vλ) =
(

6+5ε
22+20ε

, 0, 6+5ε
22+20ε

)
and

Sh(V ) =

(
6 + 5ε

(22 + 20ε)λ1
,
0

λ2
,

6 + 5ε

(22 + 20ε)λ3

)
=

(
1

2
, 0,

6 + 5ε

10

)



attainable by setting m = 1
2
, t ∈

[
1
2
, 1
]
(hence, τ = 1

2
), s = 1

2
, and p = r = 0, i.e., half mining

activity, no over tourism, no protests, and the tourist industry (inefficiently) transfers all its benefit

of cooperation to the local communities. Notice that this payoff allocation converges to (.5, 0, .6),

weakly below (.5, .5, .6), as ε approaches zero.

Consistent value There exists a unique consistent value obtained by setting λ{1,3} =
(
4
9
, 5
9

)
, λN =(

7
13
, 1
13
, 5
13

)
, vλ

{1,3}
({1, 3}) = 4

9
, vλ

N

(N) = 7
13
, and vλ

S

(S) = 0 otherwise, which results in

Co(V ) =
1

6

∑
π∈ΠN

Coπ(V ) =

(
1

2
,
1

2
,
3

5

)

attainable, as the Harsanyi value, by setting m = 1
2
, t ∈

[
1
2
, 1
]
(hence, τ = 1

2
), and p = r = s = 0,

i.e., half mining activity, no over tourism, no protests, and no marginal transfers.
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Pérez-Castrillo, D. and Wettstein, D. (2006). An ordinal Shapley value for economic enviroments. Journal

of Economic Theory, 127(1):296-308.

Roth, A. E. (1979). Ordinal models of bargaining. In Roth, A. E., editor, Axiomatic models of bargaining,

volume 170 of Lecture Notes in Economics and Mathematical Systems, pages 68-77. Springer-Verlag,

Berlin Heidelberg.

Safra, Z. and Samet, D. (2004). An ordinal solution to bargaining problems with many players. Games

and Economic Behavior, 46(1):129-142.

Samet, D. and Safra, Z. (2005). A family of ordinal solutions to bargaining problems with many agents.

Games and Economic Behavior, 50(1):89-106.

Shapley, L. S. (1953). A value for n-person games. In Kuhn, H. and Tucker, A., editors, Contributions

to the theory of games, volume II of Annals of Mathematics Studies, pages 307-317. Princeton University

Press, Princeton NJ.

Shapley, L. S., editor (1969). Utility comparison and the theory of games, La Decision: Aggegation et

Dynamique des Ordres de Preference, Paris. Editions du Centre National de la Recherche Scientifique.

Shubik, M. (1982). Game Theory in the Social Sciences: Concepts and Solutions. MIT press.

Vidal-Puga, J. (2015). A non-cooperative approach to the ordinal Shapley-Shubik rule. Journal of Math-

ematical Economics, 61:111-118.

Zhan, J., Luo, X., Feng, C., and He, M. (2018). A multi-demand negotiation model based on fuzzy rules

elicited via psychological experiments. Applied Soft Computing Journal, 67:840-864.

Zhang, D. and Zhang, Y. (2008). An ordinal bargaining solution with fixed-point property. Journal of

Artificial Intelligence Research, 33:433-464.


